通讯:靠人工智能获国际大奖的鄂尔多斯“90后”青年******
中新网鄂尔多斯11月19日电 题:靠人工智能获国际大奖的鄂尔多斯“90后”青年
中新网记者李爱平
王磊、于福全至今仍沉浸在斩获国际大奖的喜悦中。
“这次获奖,对当地学子选择职业教育有了更大信心。”19日,就职于内蒙古自治区鄂尔多斯市准格尔旗职业高级中学的这两位“90后”如是表示。
一周前的11月6日,王磊、于福全在厦门举行的2022金砖国家技术发展与技能创新大赛(厦门国际赛)人工智能机器人系统集成及应用比赛项目上斩获了三等奖。他们是内蒙古地区的唯一获奖队伍。
“尽管我们都是标准的‘理工男’,但参加人工智能领域的比赛项目依然属于新手,一切都得按照参赛要求应对,不过,内心还是很兴奋的。”王磊告诉记者。
本次大赛共有来自巴西、俄罗斯、印度、南非等国家的3500多支国际参赛队和来自中国的6200多支国内参赛队报名,参赛人员近2万人。经过层层选拔和激烈比拼,最终1600多支队伍、近2500名选手进入决赛。
图为王磊、于福全(左一)在厦门比赛期间。 于福全供图接受记者采访的于福全介绍,作为内蒙古一所职业高级中学,和其他本专科学院相比,能参加这样的比赛,机会本身就非常宝贵,因此他们从很早就开始准备。“此次比赛项目颇有难度,需自行学习编程、机器人以及智能领域相关的大量知识。”
除此之外,他们还在临近比赛时克服了疫情带来的困难,幸运的是,“当地政府、学校为我们开辟‘绿色通道’支持我们参赛,落地厦门后,到了隔离宾馆,我们一刻不敢耽误地继续进行线上学习。”
对于今次斩获三等奖,于福全用“成功的路上总是充满荆棘”来形容。“由于赛制改变,打乱了原有的训练计划,速度慢的‘硬伤’就摆在了面前,我们必须保证相关任务的完成质量,还要不断练习,提升速度。”
回忆起在厦门的比赛情形,于福全坦言,“第一天的比赛任务难度巨大,且个别内容完全出乎意料,虽然我们尽了最大的努力,达成的结果还是和预想的差一些。”
“不过,第一天比赛后,我们调整心态,告诉自己坚决不抛弃不放弃,毕竟还不清楚对手的情况,于是我们又专心准备第二天的比赛,并在第二天的比赛中出色发挥,最终取得了三等奖的成绩。”于福全谈起这些,一脸幸福。
在这两位青年看来,此次获奖最大的意义在于,作为内蒙古一所职业高中的老师,能和这么多高手同台竞技,是一个历史性的突破。
通过此次比赛,他们也认识到自身技能的不足。
他们说:“不管是技能培训,还是理论知识上,需要学习的东西还有很多,日后必定会再接再厉,争取取得更好成绩。”(完)
时空穿越不再是梦?科学家成功模拟“全息虫洞”!****** 近日,科学家打造出 “全息虫洞”的消息冲上热搜 引发了大家的讨论 虫洞是什么? 我们真的能用它穿越时空吗? 今天一起了解虫洞 01虫洞?是虫子住的洞吗? 宇宙中的虫洞是科学家推测可能存在的一种特殊隧道,它的两头连接着两个遥远的时空,理论上说,如果能从虫洞的一端穿越到另一端,就能实现超越光速的时空旅行。 电影《星际穿越》中结尾主角就是进入了虫洞,发生了时空穿越。感兴趣的同学可以去看看哦! 图源:截图 电影星际穿越中的画面 要理解虫洞,我们首先要理解“黑洞”和“白洞”。在霍金的两大科普著作《时间简史》《果壳中的宇宙》的帮助下,黑洞这一概念早已深入人心。它是在恒心死亡时,由于体积收缩,密度变大,获得使光也无法逃脱的巨大密度的一种天体。而所谓白洞,其实就是和黑洞具有相反性质的特殊天体,特点是不断往外“吐”出东西,只发射而不吸收。 一个吞噬一切,一个“吐出”一切,大家可以想象一下,如果一个黑洞恰好连上了一个白洞时会怎么样呢?这时就会形成虫洞(worm hole)。 图源:中科院理论物理研究所 虫洞示意图 1915年,爱因斯坦提出了广义相对论,在爱因斯坦的理论中,空间和时间不再是绝对的、不可变的,而是可塑的、相互依存的,且它们会受物质存在的影响。1935年,爱因斯坦和他的助手罗森在广义相对论的框架下研究黑洞,首次提出“爱因斯坦-罗森桥”的概念,这座“桥”连接了时空中两个不同区域的通道。上世纪50年代,物理学家惠勒将这座桥命名为“虫洞”。 这听起来是不是很令人心动?进入虫洞,你可能会出现在宇宙的任意一个角落,甚至穿越时空,改写你的人生,重新选择你曾经后悔的事。然而,虽然广义相对论允许虫洞的存在,物理学家还从未在宇宙中观测到虫洞,目前只有黑洞被人类实际观测。 02量子虫洞又是啥? 虽然我们还没有在宇宙中发现虫洞,但现在科学家们创造出了虫洞,还观察到了信息在虫洞之间传递的现象。不过,先别想着穿越时空,这个虫洞并非上述所讲的引力虫洞,而是一个量子虫洞。 日前,英国《自然》(Nature)杂志发表的一篇论文首次报道了利用一台量子处理器对全息虫洞进行量子“模拟”。这个全息虫洞成功地将量子态通过虫洞,由一个量子系统传递到了另一个量子系统。 如果我们想象中可以时空旅行的虫洞叫作“时空虫洞”的话,量子态的量子虫洞则可以称之为“微型虫洞”。 那么,研究量子虫洞有什么用呢? 这是因为,广义相对论和量子力学虽然各自都发展了很长一段时间,但它们之间仍然有一个根本性的“冲突”——量子引力。 具体来说, “广义相对论”描述了引力且在恒星、行星、银河上等大尺度上都适用;而“量子力学”描述了其他3种作用在微观尺度的基本力。这二者是否有“握手言欢”的可能?这就要看量子引力的表现。 物理学家们当然想通过实验去检验,但很遗憾,量子引力的能量与尺度,此前的实验室条件是无法模拟和观测的。而这就是“全息”的用武之地,它可以帮助物理学家创建一个与原始系统相当,但不太复杂的系统。这类似于用二维全息图显示三维图像的细节。 03量子虫洞是怎么创造出来的? 2019年谷歌的物理学家们提出了一种实验假说,认为一个在物理实验室中可以再造的量子态,能被解释为在两个黑洞之间的虫洞中穿越的信息。 现在,来自谷歌、MIT、费米实验室和加州理工学院的科学家们,用9个量子位、1台量子计算机模拟出了对应的量子动力学。在同一个量子芯片中,他们创建了两个纠缠的量子系统,并将一个量子位放入其中一个量子系统。结果,他们在另一个量子系统中观察到了这个量子位“穿越虫洞”而来的信息,结果符合预期的引力性质。 这是什么意思?大家可以设想在两组纠缠粒子之间,穿上一根电线或其它任何的物理连接,让粒子们编码出虫洞的两个口。 在这种耦合作用下,操作其中一侧的粒子,会引起另一侧粒子的变化。这样就有可能在两侧粒子之间撑开一个虫洞。 图片来源:inqnet/A.Mueller 量子计算机的模拟显示了信息如何通过虫洞 尽管存在争议,但是这项前所未有的实验,探索了时空以某种方式从量子信息中产生的可能性。随着量子装置的不断改进,错误率会更低,芯片会更强,那么对引力现象的研究也会更加深入。 END 资料来源:中科院物理所、极目新闻、科技日报、环球科学、量子位 整理:董小娴 (文图:赵筱尘 巫邓炎) [责编:天天中] 阅读剩余全文() |